# Read d_sim_binom_cov data, which is exported to the package data(d_sim_binom_cov_hgly2) id_to_sample <- seq(1, max(d_sim_binom_cov_hgly2$ID), by = 5) df_er_ae_hgly2 <- d_sim_binom_cov_hgly2 |> dplyr::filter(ID %in% id_to_sample) var_resp <- "AEFLAG" # develop models -------------------------------------------------------------- set.seed(1234) ermod_bin <- dev_ermod_bin( data = df_er_ae_hgly2, var_resp = var_resp, var_exposure = "AUCss_1000", var_cov = c("BHBA1C_5", "BGLUC", "RACE", "VISC"), verbosity_level = 0, # Below option to make the test fast chains = 2, iter = 1000 ) spec_coveff <- build_spec_coveff(ermod_bin) coveffsim <- sim_coveff(ermod_bin) coveffsim_2 <- sim_coveff(ermod_bin, spec_coveff = spec_coveff) # Tests ----------------------------------------------------------------------- test_that("sim_coveff", { expect_equal(coveffsim, coveffsim_2) expect_equal(dim(coveffsim), c(14, 12)) expect_equal( coveffsim$.odds_ratio, c( 0.394045222892321, 1, 4.80902749409125, 0.0814990385480039, 1, 11.0151856281521, 0.148013228492832, 1, 3.93067614853305, 1, 2.77732164370792, 2.05372376449102, 1, 0.46514853 ) ) }) test_that("plot_coveff", { g1 <- plot_coveff(coveffsim) |> expect_silent() g2 <- plot_coveff(ermod_bin) |> expect_silent() g3 <- coveffsim |> dplyr::mutate(show_ref_value = FALSE) |> plot_coveff() |> expect_silent() expect_equal(dim(g1$data), c(14, 14)) expect_equal(dim(g2$data), c(14, 14)) expect_equal(dim(g3$data), c(9, 14)) }) test_that("print_coveff", { table_coveff <- print_coveff(coveffsim) expect_equal( table_coveff$`Odds ratio`, c( "0.394", "1", "4.81", "0.0815", "1", "11.0", "0.148", "1", "3.93", "1", "2.78", "2.05", "1", "0.465" ) ) }) test_that("build_spec_coveff", { expect_equal(dim(spec_coveff), c(14, 11)) expect_equal( spec_coveff$value_label, c( "0.824", "2.31", "4.80", "6.01", "8.19", "10.3", "4.42", "6.09", "7.28", "White", "Asian", "Black", "No", "Yes" ) ) }) test_that("calc_summary_col", { spec_coveff <- build_spec_coveff(ermod_bin) calc_summary_col_cont(0:100) |> expect_equal( dplyr::tibble( value_cont = c(5, 50, 95), value_order = c(1, 2, 3), value_annot = c("5th", "median", "95th"), is_ref_value = c(FALSE, TRUE, FALSE), value_label = c("5.00", "50.0", "95.0") ) ) calc_summary_col_categ(c("A", "A", "B", "C", "C", "D")) |> expect_equal( dplyr::tibble( value_cat = c("A", "C", "B", "D"), value_order = c(1, 2, 3, 4), value_annot = c("1st freq", "2nd freq", "3rd freq", "4th freq"), is_ref_value = c(TRUE, FALSE, FALSE, FALSE), value_label = c("A", "C", "B", "D") ) ) })