# testing the bme_predict function # data data("utsnowload") x <- utsnowload[1, c("latitude", "longitude")] ch <- utsnowload[2:67, c("latitude", "longitude")] cs <- utsnowload[68:232, c("latitude", "longitude")] zh <- utsnowload[2:67, c("hard")] a <- utsnowload[68:232, c("lower")] b <- utsnowload[68:232, c("upper")] # test for posterior mode test_that("posterior mode function works", { data_object <- bme_map(ch, cs, zh, a , b) k1 <- bme_estimate(x, data_object = data_object, model = "exp", nugget = 0.0953, sill = 0.3639, range = 1.0787, zk_range = c(-1.5, 2.5))[1] k2 <- bme_predict(x, data_object = data_object, model = "exp", nugget = 0.0953, sill = 0.3639, range = 1.0787, zk_range = c(-1.5, 2.5), type = "mode")[[3]] expect_equal(round(k1,2), round(k2,2)) }) # test for posterior mean test_that("posterior mean function works", { data_object <- bme_map(ch, cs, zh, a , b) k1 <- bme_estimate(x, data_object = data_object, model = "exp", nugget = 0.0953, sill = 0.3639, range = 1.0787, zk_range = c(-1.5, 2.5))[2] k2 <- bme_predict(x, data_object = data_object, model = "exp", nugget = 0.0953, sill = 0.3639, range = 1.0787, zk_range = c(-1.5, 2.5), type = "mean")[[3]] expect_equal(round(k1,2), round(k2,2)) })