# testing the bme_predict function # data data("utsnowload") x <- data.matrix(utsnowload[1, c("latitude", "longitude")]) ch <- data.matrix(utsnowload[2:67, c("latitude", "longitude")]) cs <- data.matrix(utsnowload[68:232, c("latitude", "longitude")]) zh <- c(utsnowload[2:67, c("hard")]) a <- c(utsnowload[68:232, c("lower")]) b <- c(utsnowload[68:232, c("upper")]) # test for posterior mode test_that("posterior mode function works", { k1 <- bme_estimate(x, ch, cs, zh, a, b, model = "exp", nugget = 0.0953, sill = 0.3639, range = 1.0787)[1] k2 <- bme_predict(x, ch, cs, zh, a, b, model = "exp", nugget = 0.0953, sill = 0.3639, range = 1.0787, type = "mode")[[3]] expect_equal(round(k1,3), round(k2,3)) }) # test for posterior mean test_that("posterior mean function works", { k1 <- bme_estimate(x, ch, cs, zh, a, b, model = "exp", nugget = 0.0953, sill = 0.3639, range = 1.0787)[2] k2 <- bme_predict(x, ch, cs, zh, a, b, model = "exp", nugget = 0.0953, sill = 0.3639, range = 1.0787, type = "mean")[[3]] expect_equal(round(k1,3), round(k2,3)) })