# testing the bme_predict function # data data("utah") x <- data.matrix(utah[1, c("x", "y")]) ch <- data.matrix(utah[2:67, c("x", "y")]) cs <- data.matrix(utah[68:232, c("x", "y")]) zh <- c(utah[2:67, c("center")]) a <- c(utah[68:232, c("lower")]) b <- c(utah[68:232, c("upper")]) # variogram model and parameters model <- "sph" nugget <- 0.1184 sill <- 0.3474 range <- 119197 # additional parameters nsmax <- 5 nhmax <- 5 # test for posterior mode test_that("posterior mode function works", { k1 <- bme_estimate(x, ch, cs, zh, a, b, model, nugget, sill, range, nsmax, nhmax)[1] k2 <- bme_predict(x, ch, cs, zh, a, b, model, nugget, sill, range, nsmax, nhmax, type = "mode")[3] k1 <- data.frame(mode = k1) expect_equal(k1, k2) }) # test for posterior mean test_that("posterior mean function works", { k1 <- bme_estimate(x, ch, cs, zh, a, b, model, nugget, sill, range, nsmax, nhmax)[2] k2 <- bme_predict(x, ch, cs, zh, a, b, model, nugget, sill, range, nsmax, nhmax, type = "mean")[3] k1 <- data.frame(mean = k1) expect_equal(round(k1, 5), round(k2, 5)) })