################################################################# ### description: ### ### Testing the package BLOQ for several conditions ### Author: Vahid Nassiri ### maintainer: Vahid Nassiri ################################################################# context("Testing outcomes of functions in BLOQ!") test_that ("posieiveAUCandSrdErr",{ ## This test checks whether the function which estimate AUC, ## estimate it and its StdErr positive. set.seed(111) inputData <- simulateBealModelFixedEffects(10, 0.693, 1, 1, seq(0.5,3,1.5)) timePoints <- seq (0.5, 3, 1.5) AUCandStdErr <- estimateAUCandStdErr (inputData, timePoints) AUCandStdErrFullCML <- estimateAUCwithFullCML(inputData, 0.125, timePoints)$AUC AUCandStdErrCML <- estimateAUCwithCMLperTimePoint(inputData, 0.125, timePoints)$AUC expect_that(sum(AUCandStdErr<=0), equals(0)) expect_that(sum(AUCandStdErrFullCML<=0), equals(0)) expect_that(sum(AUCandStdErrCML<=0), equals(0)) }) test_that ("nonImputedValues",{ ## This function checks if the imputing functions don't change ## the non-BLOQ (shall we call them ALOQ ? :) above...) measurement. set.seed(111) inputData <- simulateBealModelFixedEffects(10, 0.693, 1, 1, seq(0.5,3,0.5)) imputedCML <- imputeCML (inputData, 0.125) expect_that(sum(inputData[inputData >= 0.125] - imputedCML[inputData >= 0.125]), equals(0)) imputedROS <- imputeROS (inputData, 0.125) expect_that(sum(inputData[inputData >= 0.125] - imputedROS[inputData >= 0.125]), equals(0)) imputedConstant <- imputeConstant(inputData, 0.125, 0.125/2) expect_that(sum(inputData[inputData >= 0.125] - imputedConstant[inputData >= 0.125]), equals(0)) imputedKernel <- imputeKernelDensityEstimation (inputData, 0.125, epsilon = 1e-05) expect_that(sum(inputData[inputData >= 0.125] - imputedKernel[inputData >= 0.125]), equals(0)) }) test_that ("estimatedVariance",{ ## This function checks if the imputing functions don't change ## the non-BLOQ (shall we call them ALOQ ? :) above...) measurement. set.seed(111) inputData <- simulateBealModelFixedEffects(10, 0.693, 1, 1, seq(0.5,3,1.5)) timePoints <- seq (0.5, 3, 1.5) AUCandStdErrFullCML <- eigen(estimateAUCwithFullCML(inputData, 0.125, timePoints)$estCML$Sigma)$values AUCandStdErrCML <- estimateAUCwithCMLperTimePoint(inputData, 0.125, timePoints)$estCML[,2] expect_that(sum(AUCandStdErrCML<=0), equals(0)) expect_that(sum(AUCandStdErrFullCML<=0), equals(0)) })