R Under development (unstable) (2025-09-16 r88844 ucrt) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(BKP) > > test_check("BKP") Beta Kernel Process (BKP) Model Number of observations (n): 30 Input dimensionality (d): 1 Kernel type: gaussian Optimized kernel parameters: 0.0204 Minimum achieved loss: 0.01100 Loss function: brier Prior type: noninformative Beta Kernel Process (BKP) Model Number of observations (n): 30 Input dimensionality (d): 1 Kernel type: gaussian Optimized kernel parameters: 0.0204 Minimum achieved loss: 0.01100 Loss function: brier Prior type: noninformative Posterior predictive summary (training points): Mean Median SD Min Max Posterior means 0.4756 0.5034 0.1999 0.1329 0.8784 Posterior variances 0.0032 0.0028 0.0029 0.0007 0.0153 Prediction results on training data (X). Total number of training points: 30 Preview of predictions for training data (first 6 of 30 points): x mean variance 2.5% quantile 97.5% quantile -0.8497 0.3246 0.0029 0.2245 0.4335 1.1532 0.4941 0.0029 0.3889 0.5996 -0.3641 0.4503 0.0063 0.2983 0.6072 1.5321 0.5535 0.0012 0.4859 0.6202 1.7619 0.5039 0.0023 0.4093 0.5983 -1.8178 0.5184 0.0047 0.3836 0.6520 ... Simulation results on training data (X). Total number of training points: 30 Number of posterior draws (nsim): 1 Preview of simulations for training data (first 6 of 30 points): --- Posterior Probability Simulations --- x sim1 -0.8497 0.3417 1.1532 0.4619 -0.3641 0.3517 1.5321 0.5629 1.7619 0.5298 -1.8178 0.5800 ... Dirichlet Kernel Process (DKP) Model Number of observations (n): 30 Input dimensionality (d): 1 Number of classes (q): 3 Kernel type: gaussian Optimized kernel parameters: 0.0673 Minimum achieved loss: 0.00490 Loss function: brier Prior type: noninformative Summary of Dirichlet Kernel Process (DKP) Model Number of observations (n): 30 Input dimensionality (d): 1 Number of classes (q): 3 Kernel type: gaussian Optimized kernel parameters: 0.0673 Minimum achieved loss: 0.00490 Loss function: brier Prior type: noninformative Posterior predictive summary (training points): Class 1: Mean Median SD Min Max Posterior means 0.3042 0.3883 0.1963 0.0054 0.5092 Posterior variances 0.0006 0.0005 0.0004 0.0000 0.0017 Class 2: Mean Median SD Min Max Posterior means 0.2354 0.2419 0.0839 0.1076 0.3914 Posterior variances 0.0006 0.0005 0.0003 0.0002 0.0015 Class 3: Mean Median SD Min Max Posterior means 0.4604 0.4326 0.2142 0.2229 0.7998 Posterior variances 0.0007 0.0007 0.0003 0.0003 0.0015 Prediction results on training data (X). Total number of training points: 30 Preview of predictions for training data (first 6 of 30 points): Class 1 predictions: x Mean Variance 2.5% Quantile 97.5% Quantile -0.8497 0.0491 0.0001 0.0282 0.0753 1.1532 0.4780 0.0017 0.3968 0.5597 -0.3641 0.1470 0.0005 0.1073 0.1917 1.5321 0.5051 0.0005 0.4604 0.5497 1.7619 0.5092 0.0005 0.4643 0.5540 -1.8178 0.0054 0.0000 0.0001 0.0198 ... Class 2 predictions: x Mean Variance 2.5% Quantile 97.5% Quantile -0.8497 0.1511 0.0004 0.1140 0.1924 1.1532 0.2397 0.0013 0.1736 0.3127 -0.3641 0.3380 0.0008 0.2827 0.3956 1.5321 0.2700 0.0004 0.2313 0.3106 1.7619 0.2680 0.0004 0.2292 0.3086 -1.8178 0.2300 0.0009 0.1725 0.2930 ... Class 3 predictions: x Mean Variance 2.5% Quantile 97.5% Quantile -0.8497 0.7998 0.0005 0.7542 0.8418 1.1532 0.2824 0.0014 0.2119 0.3586 -0.3641 0.5150 0.0009 0.4552 0.5745 1.5321 0.2249 0.0004 0.1887 0.2632 1.7619 0.2229 0.0004 0.1867 0.2613 -1.8178 0.7646 0.0010 0.7012 0.8227 ... Simulation results on training data (X). Total number of training points: 30 Number of posterior draws (nsim): 1 Preview of simulations for training data (first 6 of 30 points): --- Posterior Probability Simulations --- Simulation 1 : x Class1 Class2 Class3 -0.8497 0.0507 0.1495 0.7997 1.1532 0.4730 0.2604 0.2666 -0.3641 0.1638 0.2965 0.5397 1.5321 0.4803 0.2644 0.2553 1.7619 0.5019 0.2912 0.2069 -1.8178 0.0024 0.2336 0.7640 ... [ FAIL 0 | WARN 0 | SKIP 0 | PASS 310 ] > > proc.time() user system elapsed 31.56 2.46 34.01