# mainly regression tests against old version of BCEA::evppi() # from version <= 2.4.5 # versus new evppi() calling voi::evppi internally # library(BCEA) if (interactive()) library(testthat) if (!requireNamespace("voi", quietly = TRUE)) { stop( "Package \"voi (>= 1.0.1)\" must be installed to use this function.", call. = FALSE ) } test_that("GAM regression (default) with vaccine data", { data(Vaccine, package = "BCEA") treats <- c("Status quo", "Vaccination") # Run the health economic evaluation using BCEA bcea_vacc <- bcea(e.pts, c.pts, ref = 2, interventions = treats) inp <- createInputs(vaccine_mat, print_is_linear_comb = FALSE) # expect_length(inp, 2) # expect_named(inp, c("mat", "parameters")) # expect_type(inp, "list") # EVPPI <- BCEA::evppi(bcea_vacc, c("beta.1.", "beta.2."), inp$mat) # save(EVPPI, file = "tests/testthat/testdata/EVPPI_GAM_default.RData") load(file = test_path("testdata", "EVPPI_GAM_default.RData")) EVPPI_voi <- evppi(bcea_vacc, c("beta.1.", "beta.2."), inp$mat) EVPPI_voi_orig <- voi::evppi(bcea_vacc[c("e","c","k")], inputs = inp$mat, pars = c("beta.1.", "beta.2."), check = TRUE) expect_s3_class(EVPPI, "evppi") expect_length(EVPPI, 10) expect_type(EVPPI, "list") expect_s3_class(EVPPI_voi, "evppi") expect_type(EVPPI_voi, "list") expect_equivalent(EVPPI$evppi, EVPPI_voi$evppi, tolerance = 0.001) expect_equivalent(EVPPI_voi_orig$evppi, EVPPI_voi$evppi, tolerance = 0.001) expect_equivalent(EVPPI$k, EVPPI_voi$k, tolerance = 0.001) expect_equivalent(EVPPI_voi_orig$k, EVPPI_voi$k, tolerance = 0.001) expect_equivalent(EVPPI$evi, EVPPI_voi$evi, tolerance = 0.001) expect_equivalent(EVPPI$index, EVPPI_voi$index) expect_equivalent(EVPPI$fitted.costs, EVPPI_voi$fitted.costs, tolerance = 0.001) expect_equivalent(EVPPI$fitted.effects, EVPPI_voi$fitted.effects, tolerance = 0.001) expect_equivalent(EVPPI$select, EVPPI_voi$select) ##TODO: snapshot # plot(EVPPI) # plot(EVPPI_voi) rm(EVPPI) }) test_that("Strong & Oakley with vaccine data", { data(Vaccine, package = "BCEA") treats <- c("Status quo", "Vaccination") bcea_vacc <- bcea(e.pts, c.pts, ref = 2, interventions = treats) inp <- createInputs(vaccine_mat, print_is_linear_comb = FALSE) expect_error(evppi(bcea_vacc, c("beta.1.", "beta.2."), inp$mat, method = "so", n.blocks = 50), regexp = "only works for single-parameter EVPPI") # EVPPI.so <- BCEA::evppi(bcea_vacc, "beta.1.", inp$mat, method = "so", n.blocks = 50) # save(EVPPI.so, file = "tests/testthat/testdata/EVPPI_so_default.RData") load(file = test_path("testdata", "EVPPI_so_default.RData")) EVPPI.so_voi <- evppi(bcea_vacc, "beta.1.", inp$mat, method = "so", n.blocks = 50) expect_s3_class(EVPPI.so, "evppi") expect_length(EVPPI.so, 6) expect_type(EVPPI.so, "list") expect_s3_class(EVPPI.so_voi, "evppi") expect_type(EVPPI.so_voi, "list") expect_equivalent(EVPPI.so$evppi, EVPPI.so_voi$evppi, tolerance = 0.001) expect_equivalent(EVPPI.so$k, EVPPI.so_voi$k, tolerance = 0.001) expect_equivalent(EVPPI.so$evi, EVPPI.so_voi$evi, tolerance = 0.001) expect_equivalent(EVPPI.so$index, EVPPI.so_voi$index) rm(EVPPI.so) }) test_that("Sadatsafavi et al with vaccine data", { data(Vaccine, package = "BCEA") treats <- c("Status quo", "Vaccination") # Run the health economic evaluation using BCEA bcea_vacc <- bcea(e.pts, c.pts, ref = 2, interventions = treats) inp <- createInputs(vaccine_mat, print_is_linear_comb = FALSE) # voi::evppi only works for single-parameter EVPPI # EVPPI.sad <- BCEA::evppi(bcea_vacc, c("beta.1.", "beta.2."), inp$mat, method = "sad", n.seps = 1) # save(EVPPI.sad, file = "tests/testthat/testdata/EVPPI_sad_default.RData") # load(file = test_path("testdata", "EVPPI_sad_default.RData")) # TODO: error # EVPPI.sal <- BCEA::evppi(bcea_vacc, c("beta.1.", "beta.2."), inp$mat, method = "sal", n.seps = 1) expect_error(evppi(bcea_vacc, param_idx = c("beta.1.", "beta.2."), inp$mat, method = "sal", n.seps = 1), regexp = "only works for single-parameter EVPPI") # voiEVPPI.sad <- voi::evppi(outputs = bcea_vacc[c("e","c","k")], inputs = inp$mat, # pars = c("beta.1.", "beta.2."), method = "sal", n.seps = 1) # EVPPI.sad <- BCEA::evppi(bcea_vacc, "beta.2.", inp$mat, method = "sad", n.seps = 1) # save(EVPPI.sad, file = "tests/testthat/testdata/EVPPI_sad_default.RData") load(file = test_path("testdata", "EVPPI_sad_default.RData")) EVPPI.sad_voi <- evppi(bcea_vacc, "beta.2.", inp$mat, method = "sad", n.seps = 1) EVPPI.sal_voi <- evppi(bcea_vacc, "beta.1.", inp$mat, method = "sal", n.seps = 1) expect_s3_class(EVPPI.sad, "evppi") expect_length(EVPPI.sad, 6) expect_type(EVPPI.sad, "list") expect_s3_class(EVPPI.sad_voi, "evppi") expect_type(EVPPI.sad_voi, "list") expect_equivalent(EVPPI.sad$evppi, EVPPI.sad_voi$evppi, tolerance = 0.001) expect_equivalent(EVPPI.sad$k, EVPPI.sad_voi$k, tolerance = 0.001) expect_equivalent(EVPPI.sad$evi, EVPPI.sad_voi$evi, tolerance = 0.001) expect_equivalent(EVPPI.sad$index, EVPPI.sad_voi$index) ##TODO: snapshot # plot(EVPPI.so) # plot(EVPPI.sad) # plot(EVPPI.so_voi) # plot(EVPPI.sad_voi) rm(EVPPI.sad) }) test_that("Select parameters by position with vaccine data", { data(Vaccine, package = "BCEA") treats <- c("Status quo", "Vaccination") # Run the health economic evaluation using BCEA bcea_vacc <- bcea(e.pts, c.pts, ref = 2, interventions = treats) inp <- createInputs(vaccine_mat, print_is_linear_comb = FALSE) # evppi_idx <- BCEA::evppi(he = bcea_vacc, param_idx = 39:40, input = inp$mat) # save(evppi_idx, file = "tests/testthat/testdata/EVPPI_idx.RData") load(file = test_path("testdata", "EVPPI_idx.RData")) evppi_idx_voi <- evppi(he = bcea_vacc, param_idx = 39:40, input = inp$mat) expect_s3_class(evppi_idx, "evppi") expect_length(evppi_idx, 10) expect_type(evppi_idx, "list") expect_s3_class(evppi_idx_voi, "evppi") expect_type(evppi_idx_voi, "list") }) test_that("INLA/SPDE with vaccine data", { data(Vaccine, package = "BCEA") treats <- c("Status quo", "Vaccination") # Run the health economic evaluation using BCEA bcea_vacc <- bcea(e.pts, c.pts, ref = 2, interventions = treats) inp <- createInputs(vaccine_mat, print_is_linear_comb = FALSE) skip_if_not_installed("INLA") skip("INLA is crashing") if (require("INLA")) { # EVPPI_inla <- BCEA::evppi(he = bcea_vacc, 39:40, input = inp$mat, method = "inla") # save(EVPPI_inla, file = "tests/testthat/testdata/EVPPI_inla_default.RData") load(file = test_path("testdata", "EVPPI_inla_default.RData")) EVPPI_inla_voi <- evppi(he = bcea_vacc, 39:40, input = inp$mat, method = "inla") expect_s3_class(EVPPI_inla, "evppi") expect_length(EVPPI_inla, 10) expect_type(EVPPI_inla, "list") expect_s3_class(EVPPI_inla_voi, "evppi") expect_type(EVPPI_inla_voi, "list") } }) test_that("Different argument formats with vaccine data", { data(Vaccine, package = "BCEA") treats <- c("Status quo", "Vaccination") # Run the health economic evaluation using BCEA bcea_vacc <- bcea(e.pts, c.pts, ref = 2, interventions = treats) inp <- createInputs(vaccine_mat, print_is_linear_comb = FALSE) # GAM regression # EVPPI_gam <- BCEA::evppi(he = bcea_vacc, param_idx = 39:40, input = inp$mat, method = "GAM") # save(EVPPI_gam, file = "tests/testthat/testdata/EVPPI_gam.RData") load(file = test_path("testdata", "EVPPI_gam.RData")) # lower case method name EVPPI_gam_voi <- evppi(he = bcea_vacc, 39:40, input = inp$mat, method = "gam") expect_s3_class(EVPPI_gam_voi, "evppi") expect_type(EVPPI_gam_voi, "list") expect_equivalent(EVPPI_gam$k, EVPPI_gam_voi$k, tolerance = 0.001) expect_equivalent(EVPPI_gam$select, EVPPI_gam_voi$select) # Strong et al GP regression # EVPPI_gp <- BCEA::evppi(he = bcea_vacc, 39:40, input = inp$mat, method = "GP") # save(EVPPI_gp, file = "tests/testthat/testdata/EVPPI_gp.RData") load(file = test_path("testdata", "EVPPI_gp.RData")) # lower case method name EVPPI_gp_voi <- evppi(he = bcea_vacc, 39:40, input = inp$mat, method = "gp") expect_s3_class(EVPPI_gp_voi, "evppi") expect_type(EVPPI_gp_voi, "list") # subsetting input PSA simulations # set.seed(1234) # EVPPI_psa <- BCEA::evppi(bcea_vacc, c("beta.1." , "beta.2."), inp$mat, N = 100) # save(EVPPI_psa, file = "tests/testthat/testdata/EVPPI_psa.RData") load(file = test_path("testdata", "EVPPI_psa.RData")) set.seed(1234) EVPPI_psa_voi <- evppi(bcea_vacc, c("beta.1." , "beta.2."), inp$mat, N = 100) expect_equivalent(EVPPI_psa$select, EVPPI_psa_voi$select) expect_equivalent(EVPPI_psa$evppi, EVPPI_psa_voi$evppi, tolerance = 0.001) expect_equivalent(EVPPI_psa$k, EVPPI_psa_voi$k, tolerance = 0.001) expect_equivalent(EVPPI_psa$evi, EVPPI_psa_voi$evi, tolerance = 0.001) expect_equivalent(EVPPI_psa$index, EVPPI_psa_voi$index) }) test_that("Mesh plotting with vaccine data", { skip("plot = TRUE mesh plot to be snapshot") data(Vaccine, package = "BCEA") treats <- c("Status quo", "Vaccination") # Run the health economic evaluation using BCEA bcea_vacc <- bcea(e.pts, c.pts, ref = 2, interventions = treats) inp <- createInputs(vaccine_mat, print_is_linear_comb = FALSE) # # GAM regression (default) # # plot not produced # EVPPI <- BCEA::evppi(bcea_vacc, c("beta.1.", "beta.2."), inp$mat, plot = TRUE) # EVPPI_voi <- evppi_voi(bcea_vacc, c("beta.1.", "beta.2."), inp$mat, plot = TRUE) # EVPPI_voi_orig <- voi::evppi(bcea_vacc[c("e","c","k")], inputs = inp$mat, pars = c("beta.1.", "beta.2."), check = TRUE, plot_inla_mesh = TRUE) # # # INLA # EVPPI_inla <- BCEA::evppi(he = bcea_vacc, 39:40, input = inp$mat, method = "inla", plot = TRUE) # EVPPI_inla_voi <- evppi_voi(he = bcea_vacc, 39:40, input = inp$mat, method = "inla", plot = TRUE) }) test_that("Fitted values with vaccine data two parameters", { data(Vaccine, package = "BCEA") treats <- c("Status quo", "Vaccination") # Run the health economic evaluation using BCEA bcea_vacc <- bcea(e.pts, c.pts, ref = 2, interventions = treats) inp <- createInputs(vaccine_mat, print_is_linear_comb = FALSE) # GP # set.seed(1234) # EVPPI_gp_residuals <- # BCEA::evppi( # he = bcea_vacc, # param_idx = 39:40, # input = inp$mat, # method = "gp", # residuals = TRUE) # save(EVPPI_gp_residuals, file = "tests/testthat/testdata/EVPPI_gp_residuals.RData") load(file = test_path("testdata", "EVPPI_gp_residuals.RData")) set.seed(1234) EVPPI_gp_voi_residuals <- evppi( he = bcea_vacc, param_idx = 39:40, input = inp$mat, method = "gp", residuals = TRUE) expect_equivalent( EVPPI_gp_residuals$select, EVPPI_gp_voi_residuals$select) expect_equivalent( EVPPI_gp_residuals$fitted.costs, EVPPI_gp_voi_residuals$fitted.costs, tolerance = 0.1) expect_equivalent( EVPPI_gp_residuals$fitted.effects, EVPPI_gp_voi_residuals$fitted.effects, tolerance = 0.1) # SAD # set.seed(1234) # EVPPI_sad_residuals <- # BCEA::evppi( # he = bcea_vacc, # param_idx = "beta.2.", # input = inp$mat, # method = "sad", # residuals = TRUE) # save(EVPPI_sad_residuals, file = "tests/testthat/testdata/EVPPI_sad_residuals.RData") load(file = test_path("testdata", "EVPPI_sad_residuals.RData")) set.seed(1234) EVPPI_sad_voi_residuals <- evppi( he = bcea_vacc, param_idx = "beta.2.", input = inp$mat, method = "sad", residuals = TRUE) # no fitted values returned expect_null(EVPPI_sad_residuals$fitted.costs) expect_null(EVPPI_sad_residuals$fitted.effects) expect_null(EVPPI_sad_voi_residuals$fitted.costs) expect_null(EVPPI_sad_voi_residuals$fitted.effects) # GAM # set.seed(1234) # EVPPI_gam_residuals <- # BCEA::evppi( # he = bcea_vacc, # param_idx = 39:40, # input = inp$mat, # method = "gam", # residuals = TRUE) # save(EVPPI_gam_residuals, file = "tests/testthat/testdata/EVPPI_gam_residuals.RData") load(file = test_path("testdata", "EVPPI_gam_residuals.RData")) set.seed(1234) EVPPI_gam_voi_residuals <- evppi( he = bcea_vacc, param_idx = 39:40, input = inp$mat, method = "gam", residuals = TRUE) expect_equivalent( EVPPI_gam_residuals$fitted.costs, EVPPI_gam_voi_residuals$fitted.costs, tolerance = 0.001) expect_equivalent( EVPPI_gam_residuals$fitted.effects, EVPPI_gam_voi_residuals$fitted.effects, tolerance = 0.001) skip_if_not_installed("INLA") skip("INLA is crashing") if (require("INLA")) { # set.seed(1234) # EVPPI_inla_residuals <- BCEA::evppi(he = bcea_vacc, 39:40, input = inp$mat, method = "inla", residuals = TRUE) # save(EVPPI_inla_residuals, file = "tests/testthat/testdata/EVPPI_inla_residuals.RData") load(file = test_path("testdata", "EVPPI_inla_residuals.RData")) set.seed(1234) EVPPI_inla_voi_residuals <- evppi(he = bcea_vacc, 39:40, input = inp$mat, method = "inla", residuals = TRUE) expect_equivalent( EVPPI_inla_residuals$select, EVPPI_inla_voi_residuals$select) expect_equivalent( EVPPI_inla_residuals$fitted.costs, EVPPI_inla_voi_residuals$fitted.costs, tolerance = 0.1) expect_equivalent( EVPPI_inla_residuals$fitted.effects, EVPPI_inla_voi_residuals$fitted.effects, tolerance = 0.1) } }) test_that("Fitted values with vaccine data three parameters", { data(Vaccine, package = "BCEA") treats <- c("Status quo", "Vaccination") # Run the health economic evaluation using BCEA bcea_vacc <- bcea(e.pts, c.pts, ref = 2, interventions = treats) inp <- createInputs(vaccine_mat, print_is_linear_comb = FALSE) # GP # set.seed(1234) # EVPPI_gp_3_residuals <- # BCEA::evppi( # he = bcea_vacc, # param_idx = 39:41, # input = inp$mat, # method = "gp", # residuals = TRUE) # save(EVPPI_gp_3_residuals, file = "tests/testthat/testdata/EVPPI_gp_3_residuals.RData") load(file = test_path("testdata", "EVPPI_gp_3_residuals.RData")) set.seed(1234) EVPPI_gp_voi_residuals <- evppi( he = bcea_vacc, param_idx = 39:41, input = inp$mat, method = "gp", residuals = TRUE) expect_equivalent( EVPPI_gp_3_residuals$fitted.costs, EVPPI_gp_voi_residuals$fitted.costs, tolerance = 0.1) expect_equivalent( EVPPI_gp_3_residuals$fitted.effects, EVPPI_gp_voi_residuals$fitted.effects, tolerance = 0.1) # GAM # set.seed(1234) # EVPPI_gam_3_residuals <- # BCEA::evppi( # he = bcea_vacc, # param_idx = 39:41, # input = inp$mat, # method = "gam", # residuals = TRUE) # save(EVPPI_gam_3_residuals, file = "tests/testthat/testdata/EVPPI_gam_3_residuals.RData") load(file = test_path("testdata", "EVPPI_gam_3_residuals.RData")) set.seed(1234) EVPPI_gam_voi_residuals <- evppi( he = bcea_vacc, param_idx = 39:41, input = inp$mat, method = "gam", residuals = TRUE) expect_equivalent( EVPPI_gam_3_residuals$fitted.costs, EVPPI_gam_voi_residuals$fitted.costs, tolerance = 0.1) expect_equivalent( EVPPI_gam_3_residuals$fitted.effects, EVPPI_gam_voi_residuals$fitted.effects, tolerance = 0.1) skip_if_not_installed("INLA") skip("INLA is crashing") if (require("INLA")) { # set.seed(1234) # EVPPI_inla_3_residuals <- # BCEA::evppi( # he = bcea_vacc, # param_idx = 39:41, # input = inp$mat, # method = "inla", # residuals = TRUE) # save(EVPPI_inla_3_residuals, file = "tests/testthat/testdata/EVPPI_inla_3_residuals.RData") load(file = test_path("testdata", "EVPPI_inla_3_residuals.RData")) set.seed(1234) EVPPI_inla_voi_residuals <- evppi( he = bcea_vacc, param_idx = 39:41, input = inp$mat, method = "inla", residuals = TRUE) expect_equivalent( EVPPI_inla_3_residuals$fitted.costs, EVPPI_inla_voi_residuals$fitted.costs, tolerance = 0.1) expect_equivalent( EVPPI_inla_3_residuals$fitted.effects, EVPPI_inla_voi_residuals$fitted.effects, tolerance = 0.1) } }) test_that("More that two interventions with smoking data", { skip("more than two interventions to be revisited after {voi} update") data(Smoking, package = "BCEA") treats <- c("No intervention", "Self-help", "Individual counselling", "Group counselling") inp <- createInputs(smoking_output, print_is_linear_comb = FALSE) bcea_smoke <- bcea(eff, cost, ref = 4, interventions = treats, Kmax = 500) # all interventions # bcea_smoke <- bcea(eff, cost, ref = 4, .comparison = 1, interventions = treats, Kmax = 500) # bcea_smoke <- bcea(eff, cost, ref = 4, .comparison = c(2,3), interventions = treats, Kmax = 500) # expect_length(inp , 2) # expect_named(inp, c("mat", "parameters")) # expect_type(inp, "list") set.seed(1234) # EVPPI_smoke <- BCEA::evppi(bcea_smoke, param_idx = c(2,3), inp$mat, h.value = 5e-7, method = "gam") # save(EVPPI_smoke, file = "tests/testthat/testdata/EVPPI_smoke.RData") # load(file = test_path("testdata", "EVPPI_smoke.RData")) set.seed(1234) EVPPI_voi <- evppi(bcea_smoke, param_idx = c(2,3), inp$mat, h.value = 5e-7, method = "gam") # voiEVPPI <- voi::evppi(bcea_smoke[c("e","c","k")], pars = c("d.3.", "d.4."), inputs = inp$mat, h.value = 5e-7) expect_s3_class(EVPPI_voi, "evppi") expect_type(EVPPI_voi, "list") ##TODO: error expect_equivalent(EVPPI_smoke$evppi, EVPPI_voi$evppi, tolerance = 0.01) expect_equivalent(EVPPI_smoke$k, EVPPI_voi$k, tolerance = 0.001) expect_equivalent(EVPPI_smoke$k, EVPPI_voi$k, tolerance = 0.001) expect_equivalent(EVPPI_smoke$evi, EVPPI_voi$evi, tolerance = 0.001) expect_equivalent(EVPPI_smoke$select, EVPPI_voi$select) expect_equivalent(EVPPI_smoke$index, EVPPI_voi$index) ##TODO: error ##TODO: seems like the wrong order of columns? ## what is the correct order? label columns? expect_equivalent(EVPPI_smoke$fitted.costs, EVPPI_voi$fitted.costs, tolerance = 0.001) expect_equivalent(EVPPI_smoke$fitted.effects, EVPPI_voi$fitted.effects, tolerance = 0.001) # plot(EVPPI_voi) })