# library(dplyr) # library(reshape2) ##TODO: test_that("compute_U", { load(test_path("testdata", "ce.RData")) # single wtp # c_tmp <- matrix(c(0, 0, 100, 10), nrow = 2) # e_tmp <- matrix(c(0, 0, 1, -2), nrow = 2) # # res <- # bcea(e = e_tmp, # c = c_tmp, k = 5) # # k <- 5 # n_comparisons <- 1 # delta_e <- c(-1, 2) # delta_c <- c(-100, -10) # this actually a saving for intervention # n_sim <- 2 # # ib_1 <- k*delta_e[1] - delta_c[1] # 5*(-1) - (-100) = 95 # ib_2 <- k*delta_e[2] - delta_c[2] # 5*2 - (-10) = 20 # # expect_equivalent(c(ib_1, ib_2), res$ib) # # # # multiple wtp # # k <- c(5, 10) # K <- 2 # # res <- # bcea(e = e_tmp, # c = c_tmp, k = k) # # ib_1 <- k*delta_e[1] - delta_c[1] # 95, 10*(-1) - (-100) = 90 # ib_2 <- k*delta_e[2] - delta_c[2] # 20, 10*2 - (-10) = 30 # # expect_equivalent(cbind(ib_1, ib_2), drop(res$ib)) # # # # multiple comparisons # # c_tmp <- matrix(c(0, 0, 100, 10, 0, 1), nrow = 2) # e_tmp <- matrix(c(0, 0, 1, -2, -3, -4), nrow = 2) # n_comparisons <- 2 # # res <- # bcea(e = e_tmp, # c = c_tmp, k = k) # # # sim x comprison # delta_e <- matrix(c(-1,3, # 2,4), nrow = 2, byrow = TRUE) # delta_c <- matrix(c(-100, 0, # -10, -1), nrow = 2, byrow = TRUE) # # ib_11 <- k*delta_e[1,1] - delta_c[1,1] # 15 30 # ib_12 <- k*delta_e[1,2] - delta_c[1,2] # 15 30 # ib_21 <- k*delta_e[2,1] - delta_c[2,1] # 15 30 # ib_22 <- k*delta_e[2,2] - delta_c[2,2] # 21 41 # # expect_equivalent(cbind(ib_11, ib_21), res$ib[,,1 ]) # expect_equivalent(cbind(ib_12, ib_22), res$ib[,,2 ]) })