context("bayesglm fit") # Github issue #67 test_that("bayesglm.fit", { data(Pima.tr, package="MASS") # Github issue #67 expect_equal(bayesglm.fit(y = Pima.tr$type, x = Pima.tr$age, family=binomial(), coefprior=bic.prior())$coef, glm.fit(y = Pima.tr$type, x = Pima.tr$age, family=binomial())$coef) #OK below this expect_equal(bayesglm.fit(y = Pima.tr$type, x = Pima.tr$age, family=binomial(), coefprior=bic.prior())$coef, glm.fit(y = Pima.tr$type, x = Pima.tr$age, family=binomial())$coef) expect_equal(bayesglm.fit(y = cbind(Pima.tr$type, Pima.tr$type), x = cbind(1, 1.0*Pima.tr$age), family=binomial(), coefprior=bic.prior())$coef, glm.fit(y = cbind(Pima.tr$type, Pima.tr$type), x = cbind(1, 1.0*Pima.tr$age), family=binomial())$coef) expect_equal(bayesglm.fit(y = as.double(Pima.tr$type == "Yes"), x = Pima.tr$age, family=binomial(), coefprior=bic.prior())$coef, glm.fit(y = as.double(Pima.tr$type == "Yes"), x = Pima.tr$age, family=binomial())$coef ) expect_equal(bayesglm.fit(y = cbind((Pima.tr$type == "Yes"), 5.0), x = Pima.tr$age, family=binomial(), coefprior=bic.prior())$coef, glm.fit(y = cbind((Pima.tr$type == "Yes"), 5.0), x = Pima.tr$age, family=binomial())$coef ) expect_equal(bayesglm.fit(y = cbind((Pima.tr$type == "Yes"), 1.0), x = cbind(1, 1.0*Pima.tr$age), family=binomial(), coefprior=bic.prior())$coef, glm.fit(y = cbind((Pima.tr$type == "Yes"), 1.0), x = cbind(1, 1.0*Pima.tr$age), family=binomial())$coef) expect_equal(bayesglm.fit(y = cbind((Pima.tr$type == "Yes"), 1.0), x = Pima.tr$age, family=binomial(), coefprior=bic.prior())$coef, glm.fit(y = cbind((Pima.tr$type == "Yes"), 1.0), x = Pima.tr$age, family=binomial())$coef) expect_equal(bayesglm.fit(y = cbind(Pima.tr$type, 2.0), x = cbind(1, 1.0*Pima.tr$age), family=binomial(), coefprior=bic.prior())$coef, glm.fit(y = cbind(Pima.tr$type, 2.0), x = cbind(1, 1.0*Pima.tr$age), family=binomial())$coef) wt = sample(1:10, size=nrow(Pima.tr), replace=TRUE) expect_equal(bayesglm.fit(y = cbind((Pima.tr$type == "Yes"), 1.0), x = cbind(1, 1.0*Pima.tr$age), weights = wt, family=binomial(), coefprior=bic.prior())$coef, glm.fit(y = cbind((Pima.tr$type == "Yes"), 1.0), x = cbind(1,1.0*Pima.tr$age), weights = wt, family=binomial())$coef) expect_equal(bayesglm.fit(y = cbind((Pima.tr$type == "Yes"), wt), x = cbind(1, 1.0*Pima.tr$age), family=binomial(), coefprior=bic.prior())$coef, glm.fit(y = cbind((Pima.tr$type == "Yes"), wt), x = cbind(1,1.0*Pima.tr$age), family=binomial())$coef) expect_equal(bayesglm.fit(y = c((Pima.tr$type == "Yes"), rep(0.0, nrow(Pima.tr))), x = 1.0*c(Pima.tr$age, Pima.tr$age), family=binomial(), coefprior=bic.prior())$coef, glm.fit(y = c((Pima.tr$type == "Yes"), rep(0.0, nrow(Pima.tr))), x = 1.0*c(Pima.tr$age, Pima.tr$age), family=binomial())$coef ) })