# install the package and use this script to test the package library("APCI") # or: remotes::install_github("jiahui1902/APCI") test_data <- APCI::women9017 test_data$acc <- as.factor(test_data$acc) test_data$pcc <- as.factor(test_data$pcc) test_data$educc <- as.factor(test_data$educc) test_data$educr <- as.factor(test_data$educr) # equal age and period interval APC_I <- APCI::apci(outcome = "inlfc", age = "acc", period = "pcc", cohort = "ccc", weight = "wt", data = test_data,dev.test=FALSE, print = TRUE, family = "gaussian") summary(APC_I) APC_I$model$coefficients summary(APC_I$model) APC_I$dev_global APC_I$dev_local APC_I$intercept APC_I$age_effect APC_I$period_effect APC_I$cohort_average APC_I$cohort_slope APC_I$cohort_index apci.plot.raw(data = test_data, outcome_var = "inlfc",age="acc",period="pcc") apci.plot(data = test_data, outcome_var = "inlfc", age = "acc",model=APC_I, period = "pcc",type="explore") apci.bar(model = APC_I, age = "acc",period = "pcc") apci.plot.heatmap(model = APC_I, age = "acc",period = "pcc") apci.plot.hexagram(model = APC_I, age = "acc",period = "pcc", first_age = 20,first_period = 1990,interval = 5) apci.plot(data = test_data, outcome_var = "inlfc", age = "acc",model=APC_I, period = "pcc") # other type of generalized linear model APC_I2 <- APCI::apci(outcome = "inlfc", age = "acc", period = "pcc", cohort = "ccc", weight = "wt", covariate = "offset(log(educ))", data = test_data,dev.test=FALSE, print = TRUE, family = "poisson") summary(APC_I2) # unequal age and period interval uneqal_interval1 <- APCI::apci(outcome = "inlfc", age = "age", period = "year", cohort = "ccc", weight = "wt", data = test_data,dev.test=FALSE, print = TRUE, family = "gaussian", unequal_interval = TRUE, age_range = 20:64, period_range = 1990:2019, age_interval = 5, period_interval = 10) uneqal_interval1$cohort_index uneqal_interval2 <- APCI::apci(outcome = "inlfc", age = "age", period = "year", cohort = "ccc", weight = "wt", data = test_data,dev.test=FALSE, print = TRUE, family = "gaussian", unequal_interval = TRUE, age_range = 20:64, period_range = 1990:2019, age_interval = 10, period_interval = 5) uneqal_interval2$cohort_index uneqal_interval3 <- APCI::apci(outcome = "inlfc", age = "age", period = "year", cohort = "ccc", weight = "wt", data = test_data,dev.test=FALSE, print = TRUE, family = "gaussian", unequal_interval = T, age_range = 20:69, period_range = 1990:2019, age_group = c("20-29","30-39", "40-49","50-59", "60-69"), period_group = c("1990-1994","1995-1999", "2000-2004","2005-2009", "2010-2014","2015-2019")) uneqal_interval3$cohort_index uneqal_interval2$cohort_index uneqal_interval3$cohort_index uneqal_interval2$cohort_average$cohort_average uneqal_interval3$cohort_average$cohort_average # simulated panel data for GEE simulation_gee <- simulation simulation_gee$id <- 1:nrow(simulation_gee) simulation_gee$idid <- 1:nrow(simulation_gee) # simulation_gee$id <- NULL simulation_gee = simulation_gee[sample(nrow(simulation_gee),30000,replace=T),] model_gee <- apci(outcome = "y", age = "age", period = "period", cohort = NULL, weight = NULL, covariate = NULL, data=simulation_gee, family ="gaussian", dev.test = FALSE, print = TRUE, gee = TRUE, id = "id", corstr = "exchangeable") summary(model_gee)