test_that("calc_density works with valid input", { # Valid input: Participants with valid answers for housing type survey_df <- data.frame( person_id = c(1, 2, 3, 4), question_concept_id = c(40192458, 40192458, 40192458, 40192458), answer_concept_id = c(40192407, 40192472, 40192409, 40192433) # Low and High responses ) # Expected output: Participant 1 has "Low" density, others have "High" expected_output <- data.frame( person_id = c(1, 2, 3, 4), density = c("Low", "High", "High", "High") ) # Call the function and compare with expected output result <- calc_density(survey_df) # Sort both result and expected output for comparison result <- result[order(result$person_id), ] expected_output <- expected_output[order(expected_output$person_id), ] expect_equal(result$density, expected_output$density) }) test_that("calc_density handles non-answers correctly", { # Input with non-answer codes or irrelevant answer_concept_ids survey_df <- data.frame( person_id = c(1, 2, 3), question_concept_id = c(40192458, 40192458, 40192458), answer_concept_id = c(99999999, 99999998, 99999997) # Invalid codes ) # Expected output: Empty data frame since non-answers are removed expected_output <- data.frame( person_id = integer(0), # Empty integer vector for person_id density = character(0) # Empty character vector for density ) result <- calc_density(survey_df) # Sort both result and expected output result <- result[order(result$person_id), ] expected_output <- expected_output[order(expected_output$person_id), ] expect_equal(result$density, expected_output$density) }) test_that("calc_density handles missing responses correctly", { # Some responses are missing or invalid survey_df <- data.frame( person_id = c(1, 2, 3), question_concept_id = c(40192458, 40192458, 40192458), answer_concept_id = c(903096, 40192407, 99999999) # Missing or invalid responses ) # Expected output: NA for missing response, "Low" for valid, NA for invalid expected_output <- data.frame( person_id = c(2), density = c("Low") # Only valid responses are expected ) result <- calc_density(survey_df) # Sort both result and expected output result <- result[order(result$person_id), ] expected_output <- expected_output[order(expected_output$person_id), ] expect_equal(result$density, expected_output$density) }) test_that("calc_density returns empty data frame for no relevant data", { # Input where none of the question_concept_id matches survey_df <- data.frame( person_id = c(1, 2, 3), question_concept_id = c(99999999, 99999999, 99999999), # Non-matching concept ID answer_concept_id = c(40192407, 40192472, 40192409) ) result <- calc_density(survey_df) # Expect the result to be an empty data frame (no matching question_concept_id) expect_equal(nrow(result), 0) }) test_that("calc_density handles empty input", { # Empty input case survey_df <- data.frame( person_id = integer(0), question_concept_id = integer(0), answer_concept_id = integer(0) ) result <- calc_density(survey_df) # Expect the result to be an empty data frame expect_equal(nrow(result), 0) }) test_that("calc_density handles invalid column names", { # Input with incorrect column names bad_survey_df <- data.frame( wrong_person_id = c(1, 1), wrong_question_id = c(40192458, 40192458), wrong_answer_id = c(40192407, 40192407) ) # Expect an error when the input does not have the correct column names expect_error(calc_density(bad_survey_df), "object 'question_concept_id' not found") })