test_that("Example 11.4", { tmp <- theil.kendall(ch11$reportedtime, ch11$parentlimit, H0 = 1, do.asymp = TRUE) expect_equal(tmp$stat, 0.56666667) expect_equal(tmp$pval.exact, 0.081746032) expect_equal(tmp$pval.asymp, 0.176474291) }) test_that("Example 11.6", { expect_equal(theil.kendall(ch11$reportedtime, ch11$parentlimit, do.alpha = TRUE)$stat.note, paste0("Estimate of alpha using median of d_i: 2.33333\n", "Hodges-Lehmann estimator of alpha: 2.40000\n\n", "Neither exact, asymptotic nor Monte Carlo test requested")) }) test_that("Exercise 11.3", { expect_equal(theil.kendall(ch11$rotten, ch11$days.stored)$stat, 2.375) }) test_that("Exercise 11.9", { expect_equal(theil.kendall(ch11$weight.gain.A, ch11$food.weight.A, do.abbreviated = TRUE)$stat, 0.17105263) expect_equal(theil.kendall(ch11$weight.gain.B, ch11$food.weight.B, do.abbreviated = TRUE)$stat, 0.35365854) }) test_that("Exercise 11.10", { expect_equal(theil.kendall(ch11$SW.England, ch11$N.Scotland)$stat, 1.024) expect_equal(theil.kendall(ch11$N.Scotland, ch11$SW.England)$stat, 0.97196262) expect_equal(median( ch11$N.Scotland - theil.kendall(ch11$N.Scotland, ch11$SW.England)$stat * ch11$SW.England), 20.490654) expect_equal(median( ch11$N.Scotland - theil.kendall(ch11$N.Scotland, ch11$SW.England)$stat * ch11$SW.England) + theil.kendall(ch11$N.Scotland, ch11$SW.England)$stat * 122, 139.070093) })