#' @title Testing plot.p_score #' @section Last Updated By: #' Yongqi Zhong #' @section Last Update Date: #' 2020/05/27 test_that("plot.p_score", { require(SuperLearner) vec <- function() sample(0:1,100,replace = T) sl.lib <- c("SL.mean","SL.glm") aipw <- AIPW$new(Y=vec(), A=vec(), W.Q =vec(), W.g =vec(), Q.SL.library=sl.lib, g.SL.library=sl.lib, k_split = 1,verbose = FALSE) expect_error(aipw$plot.p_score(),regexp = "`ggplot2` package is not loaded.") require(ggplot2) #before fitted expect_error(aipw$plot.p_score(),regexp = "Propensity scores are not estimated.") #after fitted aipw$fit() expect_message(g.plot <- aipw$plot.p_score(),regexp = "ATE has not been calculated.") expect_true(inherits(aipw$g.plot, "ggplot")) #after truncation capture.output(aipw$fit()$summary()) expect_silent(g.plot <- aipw$plot.p_score()) expect_true(inherits(aipw$g.plot, "ggplot")) }) #' @title Testing plot.ip_weights #' @section Last Updated By: #' Yongqi Zhong #' @section Last Update Date: #' 2021/01/26 test_that("plot.ip_weights", { require(SuperLearner) vec <- function() sample(0:1,100,replace = T) sl.lib <- c("SL.mean","SL.glm") aipw <- AIPW$new(Y=vec(), A=vec(), W.Q =vec(), W.g =vec(), Q.SL.library=sl.lib, g.SL.library=sl.lib, k_split = 1,verbose = FALSE) #before fitted expect_error(aipw$plot.ip_weights(),regexp = "Propensity scores are not estimated.") #after fitted aipw$fit() expect_error(ip_weights.plot <- aipw$plot.ip_weights(),regexp = "ATE has not been calculated.") #after truncation capture.output(aipw$fit()$summary()) expect_silent(ip_weights.plot <- aipw$plot.ip_weights()) expect_true(inherits(aipw$ip_weights.plot, "ggplot")) })